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Model predictive control, as the most popular intelligent advanced control technology in recent years, is
increasingly applied to building air conditioning systems to achieve adaptive and energy-efficient oper-
ation of the system, however, model predictive control imposes higher requirements on the computa-
tional efforts of the model. In this research, a complex coupled heat transfer model of the increasingly
popular radiant floor system is analyzed and a full-order model of the radiant floor is developed. Then,
after controllability and observability analysis, a fast high-fidelity reduced-order model that can accu-
rately characterize the dynamic thermal performance of the original model is proposed applying the bal-
anced truncation method. The accuracy of the reduced-order model was verified by comparing the
radiant floor surface temperature, return water temperature, zone air temperature, and unheated average
internal surface temperature with experimental test results, the TRNSYS model, and the full-order model.
The computation time of the reduced-order model for open-loop simulation was reduced by 86% to 98%
compared to the TRNSYS model. More importantly, the reduced-order model can effectively reduce the
complexity of the model predictive control, resulting in a 38% to 78% saving in computation time com-
pared to the full-order model, significantly improving computational efficiency and enhancing the
robustness of the model predictive control.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, as radiant floor heating systems are more and
more widely used in hot summer and cold winter regions of China,
the application of model predictive control for such large time lag
systems can significantly reduce the problems of increased system
energy consumption and prolonged system thermal response time
caused by the large thermal inertia of the system[1]. Secondly,
model predictive control puts higher requirements on the compu-
tational power of the prediction model, and too much model com-
putation will lead to the degradation of control system
adaptiveness and robustness[2]. By simplifying the prediction
model and reducing the computational volume of the prediction
model in the rolling optimization process, it is an effective method
for the energy-saving operation of radiant floor heating systems
after applying model predictive control. Jiang Yi[3] has pointed
out in his research that at least 30 states are generally needed to
ensure the simulation accuracy of the state-space model single
region of the thermal model. The more states of the model require
more CPU time to complete the computation.

The excessive model order hinders the application of model
predictive control[4], and there have been many pieces of research
to apply the mature order reduction method in control systems to
building models, such as building envelope[5,6], single-zone[7,8]
or multi-zone building models[9,10], etc. Applying this method
to building models greatly simplifies the model structure and
reduces the model computation while reducing the model dimen-
sionality, which has unprecedented significance in the field of
model predictive control research[11]. Nowadays, model reduction
methods have started to be applied to more complex mathematical
and physical models, such as fluid models, electromagnetic field
models, etc.[12]. In the numerical solution of various partial differ-
ential equations, model reduction methods are widely used
because of their fast computational speed and high computational
efficiency[13–15].

The applicability of the harmonic response method, Krylov sub-
space method, and balanced truncation method in the building
envelope model was compared and analyzed by Qiong Xiangkong
et al.[16] through numerical simulations. The simulation results
show that the decrement coefficients as well as the peak and valley
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Nomenclature

msp Mass flow per unit of area
cw Specific heat capacity of water
Rw Convective thermal resistance on the inner surface of

the heat pipe
Rr The conductive thermal resistance of the heat pipe
Rx The conductive thermal resistance of the radiant floor

core layer
U1 Heat transfer coefficient of the upper configuration of

the core layer
U2 Heat transfer coefficient of the lower configuration of

the core layer
Nu Nusselt number
kw Thermal conductivity of water
kr Thermal conductivity of the heat pipe
kb Thermal conductivity of the core layer
L Length of heat pipes
do External diameter of the heat pipe
di The internal diameter of the heat pipe
dx Pipe spacing of heat pipes
r Stefan-Boltzmann
e Surface emission rate

Fi,j Radiant angle factor
Cf Heat capacity matrix of the radiant floor
Cw Heat capacity matrix of the building envelope
Cair Heat capacity matrix of the zone air
Hf Hfw Hfz Matrix of heat transfer coefficients of the radiant floor
Hw Hwf Hwz Matrix of heat transfer coefficients of the building

envelope
Hz Hzf Hzw Matrix of heat transfer coefficients of the zone air
Tf Vector of temperature nodes of the radiant floor
Tw Vector of temperature nodes of the building envelope
Tz Vector of temperature nodes of the zone air
qf Heat flow matrix for the radiant floor
qw Heat flow matrix for the building envelope
qz Heat flow matrix for the zone air
qrad Radiant heat exchange
Wc Controllability Gram matrix
Wo Observable Gram matrix
C Hankel matrix
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values of the reduced-order model match the results of the har-
monic response method when the roof model is simplified with
these two reduced-order algorithms. The maximum absolute
errors of temperature and heat flux calculated among these three
models are 0.2 �C and 1.5 W=m2, respectively. The Krylov subspace
method is computationally fast, while the balanced truncation
method has a better stability. Qiongxiang Kong et al.[17] con-
ducted a comparative analysis of the application of the Krylov sub-
space method and balanced truncation method in building
envelope model order reduction. The numerical simulation results
of the building heat transfer models through the single roof, multi-
layer wall, and L-shaped thermal bridge showed that the relative
errors of the reduced-order model by the two methods were less
than 1% compared to the conventional harmonic response method
but consumed much less computational effort. It was further found
that the reduced-order model built by applying the Krylov sub-
space algorithm was computationally faster than that built by
the balanced truncation method.

Hou Tianfeng et al.[18] investigated the performance of two
reduced-order modeling methods, orthogonal decomposition
(POD) and proper generalized decomposition (PGD), with the stan-
dard finite element method (FEM) in terms of computational accu-
racy and computational effort. The simulation results show that
the POD model has higher computational accuracy than the PGD
model and the FEM model. Besides, the POD method has higher
applicability, better robustness, and flexibility for different build-
ing model downscaling simulation problems. Alexandra and Tal-
let[19] proposed a model reduction technique based on the
proper orthogonal decomposition (POD) algorithm to model the
infiltration air heat load of a building by introducing an infiltration
heat recovery (IHR) factor in the energy balance equation. This
newly proposed reduced-order model offers significant computa-
tional time savings compared to computational fluid dynamics
(CFD) models and has been successfully applied to low-energy
buildings.

Establishing a low-order building thermodynamic model is
important for model predictive control (MPC), which is computa-
tionally demanding, and can greatly improve the computational
efficiency of MPC[20]. Sidhash-Goyal[21] proposed a new method
to reduce the order of a multi-zone dynamic temperature and
2

humidity building model. Most of the order reduction techniques
have many excellent applications in linear system models, but
there are some limitations when applied to nonlinear systems. A
novel method based on the balanced truncation method is pro-
posed to solve the order reduction problem of nonlinear building
models. The simulation results show that the order of the model
is greatly reduced, the computational workload is reduced by more
than 6 times, and the performance of the simplified model for pre-
dicting air temperature and humidity is almost the same as that of
the full-order model.

Eui-JongKim[22] proposed a method to solve the simplified
model directly using the balanced truncation method, which
reduces the large number of iterations required to calculate the
annual load of the Dymola model, thus improving the computa-
tional speed and also ensuring the accuracy of the model. The
two-order simplified model of the direct solver was used to simu-
late ten buildings to verify that the reduced-order model could
accurately predict the annual heat load of the buildings with a rel-
ative error of about 0.43% with the reference model. Ben Lyons
et al.[23] combined the balanced reduction method based on Han-
kel singular value decomposition with the building energy model-
ing tools for the application of model predictive control (MPC) for a
large number of building models. The MPC control schedule was
developed for a space heating system of 95m2-area zone as an
example.

Previous studies mainly focused on model reduction methods
for various building dynamic models, mainly including Krylov sub-
space method, orthogonal decomposition method, multi-point fit-
ting model reduction method, balanced truncation method, and
integral allometric transformation method, pade approximation
method, time moment method, continuous fractional method,
Ruth approximation method, etc[19,24,25]. Among them, the Kry-
lov subspace method [19,24,25], the orthogonal decomposition
method[26,27], the balanced truncation method [17,29,30], etc.
Among them, the Krylov subspace method [16,17,26], the orthog-
onal decomposition method [27,28], and the balanced truncation
method [17,28,29] are mainly applied in the field of thermal and
humid building models.

Commonly used software for building simulation includes
Computer Fluid Dynamics (CFD), EnergyPlus, and TRNSYS, which
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characterizing the heat and mass transfer of building envelopes
based on many differential equations, resulting in many itera-
tions and low computational efficiency. Nowadays, more and
more researchers apply the model reduction technique to the
field of building engineering to reduce the dimensionality of
the building model by eliminating the states meaningless to
the system outputs. The reduced-order model can maintain the
dynamic characteristics of the physical model of the building
and greatly reduce the computational efforts of the numerical
simulation, improve the computational efficiency and save the
data storage space of the computer.

Radiant floor heating systems are large time-delay systems with
severe thermal inertia of the building envelope, which seriously
limits the real-time response performance of the control system
[30]. The model predictive control system can predict the dynamic
performance of the system in the future time domain and effec-
tively alleviate the problems of high energy consumption and slow
thermal response of the system caused by large thermal inertia
[21–23,31]. However, the model predictive control requires a
tough computational effort of the model, and the excessive amount
of model computational will jeopardize the adaptiveness and
robustness of the system[32]. Therefore, it is necessary to reduce
the order of the radiant floor model to improve the computational
efficiency of the model predictive control system while ensuring
the accuracy of the model prediction[33]. Currently, model predic-
tive control has been increasingly used to improve the energy-
saving operation of building air conditioning systems, but there
is little research on model order reduction and model predictive
control of radiant floor systems, which has great research and pro-
motion value today when radiant floor systems are becoming more
and more popular. which is highly valuable to explore when radi-
ant floor systems are almost preferred by the vast majority of peo-
ple for superior comfort.

In this research, the state-space model of the radiant floor sys-
tem is established by deeply analyzing the three-dimensional heat
transfer process of the radiant floor system. The state-space model
has better scalability than the data-driven model with experimen-
tal data for the following reasons. For all the alternative models
derived from the data-driven models, to decide which one is the
best choice for the implementation of the model predictive control
is of great challenge. Besides, the pre-simulation of the data selec-
tion and the training algorithm is also a time-consuming process.
The physics-based model is more suitable for MPC because the reli-
able and enormous operation or training data is hard to obtain for
the data-driven model construction in practice. And then the
model is reduced in order based on the balanced truncation
method. Based on the controllable and observable analysis results
of the model, as well as the frequency domain response perfor-
mance and Hankel singular value of the reduced-order model, an
accurate and low-order model of the radiant floor system is
obtained. The accuracy of the reduced-order model of the radiant
floor is confirmed by comparison with field experimental tests,
the commonly used energy simulation software TRNSYS, and the
full-order model of the radiant floor system. The computational
efficiency of the transfer function model (TRNSYS), the full-order
model, and the reduced-order model under open-loop simulation
conditions are compared and analyzed, and the computational
effort of the full-order model and the reduced-order model for
the model predictive control system are compared and analyzed,
confirming that the reduced-order model can greatly reduce the
computational effort of the model predictive control, improving
the computational efficiency and the robustness of the model pre-
dictive control system.
3

1.1. State-space model for the radiant floor system

The state-space model of the radiant floor system established in
this research mainly consists of a three-dimensional radiant floor
model, building envelope model, and indoor air model. In this
study, a physics-based modeling approach is applied, which has
been increasingly used for building dynamic modeling since its
innovative introduction[34]. Building models based on machine
learning and parameter identification often rely entirely on histor-
ical operational data. To improve the accuracy of the models, these
inverse modeling approaches spend a lot of time upfront on com-
plex pre-processing of operational data to generate the datasets
required for model training[35], and access to high-quality build-
ing operational data is particularly limited. Besides, determining
which is the best model among the numerous candidate training
models is highly contingent, resulting in lower generality and a sig-
nificant reduction in model accuracy for the system under different
operating conditions[36].

The three-dimensional heat transfer model of the radiant floor
is shown in Fig. 1. The most complex three-dimensional radiant
floor model is mainly composed of the heat transfer process in
the direction of water flow in the pipe, convective heat transfer
process on the pipe inner surface, heat conductive process through
the pipe wall, heat transfer in the core temperature layer of the
floor, and other structural layers of the floor such as backfill, level-
ing layer and surface decoration layer, etc. The thermal resistance
in the direction of water flow in the pipe is derived by the heat bal-
ance principle, as shown in Eq. (1). The thermal resistance of the
pipe’s inner surface is related to the state of the fluid, and the ther-
mal resistance of the inner surface in the laminar and turbulent
flow states are shown in Eq.(2) and Eq. (3), respectively. The ther-
mal conductivity process of the tube wall can be considered as the
thermal conductivity along the cylinder wall, which is calculated as
shown in Eq. (4). The results of the finite element analysis about
the radiant floor show that there is a core temperature layer near
1/3*dx (dx is the tube spacing) from the buried tube of the floor,
and the temperature is almost constant as Tc, and the thermal
resistance of this heat transfer process is expressed by the core
temperature layer thermal resistance Rx, which is calculated as
in Eq. (5). The study shows that the temperature distribution of
the structural layers beyond the core temperature layer is uniform,
and each layer of the structure can be represented by a tempera-
ture node. Based on the thermoelectric analogy theory proposed
by Hartnett, J.[37,38] and the heat balance equation of each tem-
perature node, the three-dimensional state-space model of the

radiant floor can be obtained, as shown in Eq. (6).Where Cf is the

heat capacity matrix of the radiant floor, T
!

f is the temperature

matrix of the radiant floor layers, T
!

w is the temperature matrix

of the building envelopes, T
!

z is the temperature matrix of the zone

air. Hf is the conductive heat transfer coefficient matrix of the radi-

ant floor, Hfw is the radiant heat transfer coefficient matrix of the

radiant floor, Hfz is the convective heat transfer coefficient matrix

of the radiant floor, q!f is the heat flow matrix of the radiant floor,
including the solar radiation on the surface of the radiant floor and
the heat supply from the water flow in the buried pipes, etc.

Rz ¼ 1

_msp � cw � 1� exp � _msp � cw � Rw þ Rr þ Rx þ 1
U1þU2

� �� ��1
� �� �

� Rw þ Rr þ Rx þ 1
U1 þ U2

� 	

ð1Þ



Fig. 1. The three-dimensional heat transfer model of the radiant floor.
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Rw ¼ 1=Nu � kw � p � L2 � dx ð2Þ
Rw ¼ d0:13
x

8:0 � p � di

_msp � l
� 	0:87

ð3Þ
Rr ¼
dx � In do

di

� �
2 � kr � p ð4Þ
Rx �
dx � 13 � dx

p�d

 �

2 � p � kb ð5Þ
Cf
_
T
!

f ¼ Hf T
!

f þ Hfw T
!

w þ Hfz T
!

z þ q!f ð6Þ
The conductive heat transfer model of the wall is shown in Fig. 2

(a). Each layer of the multi-layer enclosure is represented by a tem-
perature node, and adjacent temperature nodes are connected by
thermal resistance, and the heat capacity is used to represent the
heat storage of the enclosure. The state-space model of the wall
can be obtained, as shown in Eq. (7) by associating the heat balance
equation of each temperature node, as shown in Eq. (8).

Where Cw is the heat capacity matrix of the building envelopes,

Hw is the conductive heat transfer coefficient matrix of the building

envelopes, Hwf is the radiant heat transfer coefficient matrix of the

building envelopes, Hwz is the convective heat transfer coefficient
matrix of the building envelopes, q!w is the heat flow matrix of
the building envelopes.
Fig. 2. Heat transfer model of the conductive, con

4

For the outermost temperature node of the wall, there is con-
vective heat exchange and solar radiation heat exchange with the
outdoor environment. For the innermost temperature node of the
wall, there exists convective heat exchange with indoor air tem-
perature, convective heat dissipation and radiant heat exchange
with indoor heat sources, and radiant heat exchange with other
envelope surfaces, as shown in Fig. 3.

Cw
_
T
!

w ¼ Hwf T
!

f þ Hw T
!

w þ Hwz T
!

z þ q!w ð7Þ

Cj
dT j

ds
¼ T j�1ð Þ � T j

R j�1ð Þ2 þ Rj1

þ T jþ1ð Þ � T j

Rj2 þ R jþ1ð Þ1

¼ 1
R j�1ð Þ2 þ Rj1

T j�1ð Þ � ð 1
R j�1ð Þ2 þ Rj1

þ 1
Rj2 þ R jþ1ð Þ1

ÞT j

þ 1
Rj2 þ R jþ1ð Þ1

T jþ1ð Þ ð8Þ

The convective heat transfer model between the indoor air and
the inner surface of the envelope is shown in Fig. 2(b). The heat
balance equation of the indoor air temperature node is shown in
Eq. (9), the state-space model of the indoor air temperature node
can be obtained as shown in Eq. (10). Where Cair is the heat capac-

ity matrix of the zone air, Hzf is the convective heat transfer coef-

ficient matrix between the radiant floor and the zone air, Hzw is the
convective heat transfer coefficient matrix between the building

envelopes and the zone air, Hz is also the convective heat transfer
coefficient matrix, q!z is the convective heat flow matrix, such as
ventilation load and the infiltration load, etc.
vective and convective heat transfer model.



Fig. 3. Radiant heat transfer model of the internal surfaces.
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Cair
dTz

ds
¼ Qsurf ;i þ Qinf

¼ Ts1 � Tz

Rair�floor
þ Ts2 � Tz

Rair�wall2
þ Ts3 � Tz

Rair�wall3
þ Ts4 � Tz

Rair�wall4
þ Ts5 � Tz

Rair�wall5

þ Ts6 � Tz

Rair�wall6
þ Qinf

¼ Tf � Tz

Rair�floor
þ
X5
i¼1

Tsi � Tz

Rair�walli
þ Qinf ð9Þ

Cair
_
T
!

z ¼ Hzf T
!

f þ H
zw

T
!

w þ Hz T
!

z þ q!z ð10Þ

By combining the state space heat transfer model of the radiant
floor, building envelope, and indoor air, the state-space model of
the radiant floor zone is obtained, as seen in Eq. (11).

_
T
!

f

_
T
!

w

_
T
!

z

2
6664

3
7775 ¼

Cf 0 0

0 Cw 0
0 0 Cair

2
664

3
775

�1
Hf Hfw Hfz

Hwf Hw Hwz

Hzf Hzw Hz

2
664

3
775

T
!

f

T
!

w

T
!

z

2
664

3
775

þ
Cf 0 0

0 Cw 0
0 0 Cair

2
664

3
775

�1
q!f

q!w

q!z

2
64

3
75

¼
Cf 0 0

0 Cw 0
0 0 Cair

2
664

3
775

�1
Hf Hfw Hfz

Hwf Hw Hwz

Hzf Hzw Hz

2
664

3
775

T
!

f

T
!

w

T
!

z

2
664

3
775

þ
Cf 0 0

0 Cw 0
0 0 Cair

2
664

3
775

�1

F u

ð11Þ
Fig. 4. Experimental building with four therma
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The experimental platform of the radiant floor heating system is
shown in Fig. 4. Based on the principle of establishing the state-
space model of the radiant floor zone introduced above, the
state-space model of this experimental platform is set up in Simu-
link, as shown in Fig. 5. The radiant heat exchange between the
inner envelope surfaces is calculated using the radiosity method
as shown in Eq. (12) [32], and the radiant heat exchange process
is linearized according to Eq. (13). The state-space model of the
radiant floor zones with four rooms includes 148 states, 14 model
inputs, and 28 model outputs finally, as shown in Fig. 5(a). The
inputs include the water supply temperature, ambient tempera-
ture, and other boundary-layer temperatures of the radiant floor,
etc. The outputs include the surface temperature of the radiant
floor and the unheated envelopes, and the zone air temperature,
etc.

qrad ¼ A�1 B
0
Ti � ho

h i
ð12Þ

qij ¼ r�Fij T4
i � T4

j

� �
¼ 4r�FijT

�3

ij Ti � Tj

 � ð13Þ

For the accuracy comparison of the state space model estab-
lished in this study with commonly used building energy simula-
tion software, a TRNSYS model of the same radiant floor system
was also established as a reference, as shown in Fig. 5(b).

1.2. Model order reduction

Model order reduction methods were first proposed in control
theory for large-scale integrated circuit (LSI) systems to provide
the necessary system-level synthesis and verification, and the basic
principle is to reduce the complexity of the model by reducing its
dimensionality while maintaining its dynamic characteristics[39].
The lower-order building model obtained by downscaling the
state-space model of the radiant floor zone established in the
l zones for radiant floor heating systems.



Fig. 5. (a) The state-space model in Simulink and (b) TRNSYS model of the radiant floor zones with four rooms.
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above research is essential for improving the computational effi-
ciency, shortening the computational time, and improving the
dynamic response performance of the model predictive control.
Based on previous studies, the balanced truncation method has
been widely used in the existing building models order reduction
research, and although the Krylov subspace method has a faster
computational speed, it is better and more stable for systems of
different nature applied with the balanced truncation method
[40], which is the reason for choosing this method in this study
[16,41].

A basic schematic diagram of the balanced truncation method
and performance comparison of the reduced-order model with
the response factor model is shown in Fig. 6. The controllability
and observability analysis of the state-space model of the radiant
floor zone is first performed before the downscaling of the state-
space model. The state-space method applies to a wide range of
control systems, such as adaptive control, optimal control, and
model predictive control, etc[42]. The concepts of state space
method, controllability, and observability for linear control sys-
tems were introduced by Kalman and laid the foundation of mod-
ern control theory[43].
6

For
_
x
^

tð Þ ¼ A
^

x
^

tð Þ þ B
^

u tð Þ, a system is controllable if, for any

given input x
^

t0ð Þ vector u tð Þ, it can be made to transfer from some

initial state x
^

t0ð Þ to any terminal state x
^

t1ð Þ in a finite time inter-
val [t0; t1]. According to the definition of controllability and the

Cayley-Hamilton theorem[44], it is desired to transfer x
^

0ð Þ to

x
^

t1ð Þ¼ 0 in [0; t1], i.e.

x
^

t1ð Þ ¼ eAt1 x
^

0ð Þ þ
Zt1
0

eAðt1�sÞBu sð Þds ¼ 0 ð14Þ

� x
^

0ð Þ ¼
Zt1
0

e�AsBu sð Þds ð15Þ

eAs ¼ I þ At þ 1
2!

A2t2 þ � � � ¼
X1
k¼0

1
k!
Aktk

¼ a0 tð ÞI þ a1 tð ÞAt þ � � � þ an�1ðtÞAn�1 ¼
Xn�1

k¼0

ak tð ÞAk ð16Þ



Fig. 6. Basic schematic diagram of the balanced truncation method, and performance comparison of the reduced-order model with the response factor model.
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� x
^

0ð Þ ¼
Xn�1

k¼0

AkB
Zt1
0

ak tð Þu sð Þds ¼ B AB . . .An�1B
h i

b0

b1

..

.

bn�1

2
66664

3
77775

ð17Þ

bi ¼
Z t1

0
ai sð Þu sð Þds; i ¼ 0;1; � � � ; n� 1 ð18Þ

Therefore, the sufficient condition for a linear time-invariant
system to be fully controllable is

rankQc ¼ rank½BAB � � �An�1B� ¼ n. Whether the system is control-
lable is uniquely determined by the two coefficient matrices A
and B of the state-space model, reflecting the inherent properties
of the system, independent of the system inputs, disturbances,
and with the initial state. For a multi-input system, the simplified
criterion is rank½BAB � � �An�rB� ¼ n, where r is the rank of the B
matrix.

A system is observable if, for any given input u tð Þ, the initial

state x
^

t0ð Þ of the system can be uniquely determined from the
measurements of the output vector y(t) for a finite time interval
[t0; t1]. According to the definition of observability and the
Cayley-Hamilton theorem[44], it is obtained as follows.

y tð Þ ¼ CeA t�t0ð Þ x
^

0ð Þ þ C
Zt1
t0

eA t�sð ÞBu sð Þ ð19Þ

y tð Þ � C
Zt1
t0

eA t�sð ÞBu sð Þ ¼ CeA t�t0ð Þ x
^

0ð Þ ð20Þ

y tð Þ ¼ C
Xn�1

k¼0

ak tð ÞAk x
^

0ð Þ ¼ a0 tð Þa1 tð Þ . . .an�1 tð Þ½ �

C

CA

..

.

CAn�1

2
66664

3
77775 ð21Þ
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rankQo ¼ rank

C

CA

..

.

CAn�1

2
66664

3
77775 ¼ n ð22Þ

The observability of the system is uniquely determined by the
two coefficient matrices A and C of the state-space model, reflect-
ing the inherent properties of the system, independent of the sys-
tem inputs, disturbances, and initial state. The criterion for the
observability of a multi-input system is shown in Eq. (22), where
m is the rank of the C matrix.

According to the above principle of controllability and observ-
ability analysis of the state-space model, results of controllability
and observability analysis for single-zone and multi-zone radiant
floor models are shown in Fig. 7. It can be seen that there are many
unobservable and uncontrollable states in the model and their
exclusion can simplify the model structure, then the obtained
reduced-order model can simplify the design and computational
effort of the model predictive control.

CðtÞ ¼
Z 1

0
CeAðtþsÞB#ðtÞds ð23Þ
Wc ¼
Z 1

0
eAsBBTeA

Tsds ð24Þ
WO ¼
Z 1

0
eA

TsCTCeAsds ð25Þ

The first step of the balanced truncation method is to perform a
model transformation to obtain the controllable Gramians matrix
as shown in Eq. (24) and the observable Gramians matrix as shown
in Eq. (25) of the model so that the uncontrollable states in the
state-space model are transformed into unobservable states at
the same time. Then the Hankel singular value (HSVs) as shown
in Eq. (23) is solved by the formula WO ¼ Wc ¼

P
, which is the

basis for the contribution degree of the model states to the system
output. The second step is to construct the Galerkin projection of



Fig. 7. Results of controllability and observability analysis for single-zone and multi-zone radiant floor models.
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the model based on the Hankel singular values, and the reduced-
order model obtained by applying this method can maintain the
dynamic characteristics of the original model.

The 148th-order (including 148 states or temperature nodes)
state-space model of the radiated floor region is downscaled using
the balanced truncation method. The frequency-domain response
Bode plots and Hankel singular value schematics of the full-order
model, 100th-order, 26th-order, and 10th-order models are given
as shown in Fig. 8(a), which contain 100, 26, and 10 states, respec-
tively. As shown in the figure, the frequency domain response per-
formance of the 100th-order model is almost exactly overlapped
with that of the original order model, but the dimensionality of
the model is not significantly reduced. When the frequency is in
the range of 10�7rad/s to10�3rad/s, the frequency domain response
performance of the full-order model and the 26th-order model
match very well, with almost no difference. As the frequency
increases from 10�3rad/s to 10�2rad/s, there is some difference in
the frequency domain response of some outputs of the full-order
model and the 26th-order model. When the frequency is in the
range of 10�4rad/s to 10�2rad/s, it can be seen that the frequency
domain response of the 10th-order model differs significantly from
that of the original order model, as evidenced by the large differ-
ence between the blue solid line and the red solid line in the figure.

From the Hankel singular value plot of the reduced-order
model, as shown in Fig. 8(b), it can be seen that the HSVs of the
model gradually increase from 0 to about 1.75 as the model order
decreases. The HSVs of the model with order greater than 26 is
almost equal to 0, while the HSVs of the model with order less than
26 are gradually greater than 0, which indicates that the model
with an order higher than 26 can keep the dynamic performance
of the original model better, then the 26th-order model is selected
as the final reduced-order model.

1.3. Experimental setup

The plan schematic of the experimental platform of radiant
floor heating system with four thermal zones is shown in Fig. 4,
the sizes of which are 4.2 m*3.6 m*2.5 m, 3.3 m*3.6 m*2.5 m, 3.0
m*3.0 m*2.5 m, 7.2 m*3.9 m* 2.5 m. The total area of the four zones
is 60.18 m2, of which 48.6 m2 are laid with a capillary radiant floor.
8

The total thermal resistance of the external wall, the internal wall,
the radiant floor, and the ceiling are 0.86 m2 � K=W, 0.56 m2 � K=W,
0.93 m2 � K=W, and 0.95 m2 � K=W respectively. The radiant floor is
laid with integrated capillary modules for easy installation, and the
system is supplied with hot water by an energy-efficient air-source
heat pump, which flows through the radiant floor of the four ther-
mal zones via a splitter and then back to the heat pump via a water
mixer. The indoor air temperature in the four thermal zones is con-
trolled individually, and the schematic diagram of the water sys-
tem of the multi-zone radiant floor heating system is shown in
Fig. 9.

To verify the accuracy of the reduced-order model of the radiant
floor system, the parameters of radiant floor surface temperature,
supply and return water temperature, indoor air temperature,
and unheated internal surface temperature were tested by field
experiments, and these temperatures were obtained by T-type
thermocouple measurement with a measurement error of 4.44%.
The supply and return water temperatures of the radiant floor
were obtained by the high-precision ultrasonic calorimeter mea-
surements, which had a measurement error of 0.10%. Besides, the
outdoor ambient temperature and solar radiation intensity, etc.,
were monitored by an outdoor weather station as the boundary
conditions of the reduced-order model during simulation. The
capillary-mat radiant floor, layout diagram of temperature mea-
surement points, and test apparatus in the experiment are shown
in Fig. 10.
2. Results and discussion

The MATLAB Simulink software was used to perform the
reduced-order model simulation of the multi-zone radiant floor
system, and the simulation data of radiant floor surface tempera-
ture, return water temperature, indoor air temperature, and the
average temperature of the unheated interior surface were
obtained and compared with the test results to verify the correct-
ness of the reduced-order model. The following figure shows the
results of the experimental test, TRNSYS model, full-order model,
and reduced-order model, where the grey solid line exhibits the
experimental test results, the yellow one depicts the TRNSYS



Fig. 8. (a) Frequency domain response Bode plots for different reduced-order models and (b) Hankel singular values of the reduced-order model.

Fig. 9. Schematic diagram of the water system of the multi-zone radiant floor heating system.
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Fig. 10. (a) Capillary-mat radiant floor (b) the layout diagram of temperature measurement points, and (c) test apparatus in the experiment.
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model, the blue one represents the full-order model, and the
orange one represents the 26th-order model, respectively.

2.1. Accuracy analysis of the reduced-order model

Radiant floor surface temperature of four thermal zones for
experimental tests, TRNSYS model, full-order model, and 26th-
order model is shown in Fig. 11. It can be seen that the radiant floor
surface temperature of the 26th-order model agrees well with the
experimental results and is almost identical to that of the full-
order model. Besides, the results of the full-order model and the
26th-order model also agree well with the results of the TRNSYS
model, indicating that there is almost no difference between the
modeling approach based on the state-space method and the tradi-
tional modeling based on the response factor method in terms of
model accuracy, both of which are excellent.

Return water temperature of four thermal zones for experimen-
tal tests, TRNSYS model, full-order model, and 26th-order model is
10
shown in Fig. 12. Except for the lower water temperature stage, the
relative errors between the return water temperature of the three
models and the experimental results gradually increase, which is
still within the acceptable range. The reasons for this phenomenon
are as follows: the return water temperature in the simulation
results of the three models refers to the water temperature in
the capillary tube in the radiant floor, while the return water tem-
perature of the experimental test refers to the water temperature
on the main pipe located after the water mixer. Therefore, the heat
loss on the main pipe and the measurement error is primarily
responsible for the slightly larger error in the lower water temper-
ature stage. The reasonable and low relative errors of the radiant
floor surface temperature and the return water temperature effec-
tively demonstrate the accuracy of the reduced-order model of the
radiant floor.

Zone air temperature of four thermal zones for experimental
tests, TRNSYS model, full-order model, and 26th-order model is
shown in Fig. 13. It can be seen that the zone temperature for



Fig. 11. Radiant floor surface temperature of four thermal zones for experimental tests, TRNSYS model, full-order model, and 26th-order model.

Fig. 12. Return water temperature of four thermal zones for experimental tests, TRNSYS model, full-order model, and 26th-order model.
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experimental tests, TRNSYS model, full-order model, and 26th-
order model agrees well with others, only that of the TRNSYS
model is slightly higher than the other three. The accurate dynamic
performance of the indoor air temperature model showed the great
effectiveness of the reduced-order model. The radiant floor surface
temperature is mainly influenced by the water supply tempera-
ture, while the indoor air temperature is the result of the coupling
effect of the radiant floor model, the envelope model, and the
indoor air model, which provides support to demonstrate the accu-
racy of the whole radiant floor thermal zone model with the pre-
cise zone air temperature.

The average unheated inner surface temperature of four ther-
mal zones for experimental tests, TRNSYS model, full-order model,
and 26th-order model is shown in Fig. 14. The average unheated
inner surface temperature is the average of the five internal surface
temperatures except for the radiant floor. It can be seen that the
average unheated inner surface temperature for experimental
11
tests, TRNSYS model, full-order model, and 26th-order model fol-
lowed the same trend. The great agreement between the simulated
and experimental test values of the internal surface temperature of
the unheated envelope from the figure indicates that the lineariza-
tion of the radiant heat transfer process in the model does not
jeopardize the model precision.

The mean error (ERR) and root mean square error (RMSE) of the
radiant floor surface temperature (Tfloor), return water temperature
(Twr), zone air temperature (Tzone), and average internal surface
temperature (Tsi) for the four thermal zones is shown in Table 1.
As can be seen, the mean error and root mean square of the radiant
floor surface temperature for the 26th-order model are 0.08 �C and
0.41 �C, respectively. The mean error and root mean square of the
return water temperature of the radiant floor are 3.19 �C and
4.19 �C, respectively. The mean error and root mean square of
the indoor air temperature was 1.27 �C and 1.88 �C, respectively,
and the mean error and root mean square of the unheated interior



Fig. 13. Zone air temperature of four thermal zones for experimental tests, TRNSYS model, full-order model, and 26th-order model.

Fig. 14. Average unheated inner surface temperature of four thermal zones for experimental tests, TRNSYS model, full-order model, and 26th-order model.
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surface temperature were 0.02 �C and 0.30 �C, respectively. The
26th order model has a similar level of accuracy compared to the
commonly used energy simulation software TRNSYS, indicating
that the 26th order model is sufficient for the simulation of radiant
floor systems.

Through the above analysis of simulated values and experimen-
tal test results of the radiant floor surface temperature, return
water temperature, zone air temperature, and non-heated inner
surface temperature, it can be concluded that the state-space
model and 26th order model of radiant floor thermal zones estab-
lished in this research have great dynamic performance and
reliability.
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2.2. Computational efficiency analysis

Table 2 and Fig. 15(a) show the computation time comparison
of the open-loop simulation for the 26th-order model, full-order
model, and TRNSYS model for the radiant floor heating system
when the simulation step sizes are 5 min, 10 min, and 30 min,
and the simulation durations are 30 days and 365 days, respec-
tively. The computation time for the 26th-order model ranges from
0.771 to 2 s. The computation time for the reduced-order model is
so short that the effect of the simulation step size and simulation
duration on the computation time is negligible. The simulation
computation time for the full-order model is at most 2.5 times



Table 1
The mean error (ERR) and root mean square error (RMSE) of the radiant floor surface temperature (Tfloor), return water temperature (Twr), zone air temperature (Tzone), and average
internal surface temperature (Tsi) for the four thermal zones.

Tfloor ERR(◦C) RMSE(◦C)

TRNSYS model Full-order model 26th-order model TRNSYS model Full-order model 26th-order model

Room1 0.42 0.22 0.16 0.58 0.35 0.44
Room2 0.41 �0.27 �0.37 0.59 0.46 0.49
Room3 0.45 �0.12 �0.16 0.65 0.29 0.38
Livingroom 0.10 0.07 0.05 0.30 0.24 0.33
Average 0.35 �0.03 �0.08 0.53 0.33 0.41
Twr ERR(◦C) RMSE(◦C)

TRNSYS model Full-order model 26th-order model TRNSYS model Full-order model 26th-order model
Room1 1.86 3.01 3.89 3.53 3.58 4.69
Room2 0.60 1.53 2.50 3.18 3.01 4.58
Room3 1.51 2.22 2.72 3.26 2.63 3.03
Livingroom 2.19 2.85 3.68 3.53 3.43 4.47
Average 1.54 2.40 3.19 3.38 3.16 4.19
Tzone ERR(◦C) RMSE(◦C)

TRNSYS model Full-order model 26th-order model TRNSYS model Full-order model 26th-order model
Room1 �0.56 �0.33 �0.54 1.37 1.13 1.60
Room2 �0.93 �1.71 �2.23 1.58 2.22 2.79
Room3 �0.67 �0.99 �1.45 1.27 1.28 1.79
Livingroom �0.67 �0.82 �0.85 1.23 1.26 1.35
Average �0.71 �0.96 �1.27 1.36 1.47 1.88
Tsi ERR(◦C) RMSE(◦C)

TRNSYS model Full-order model 26th-order model TRNSYS model Full-order model 26th-order model
Room1 �0.16 �0.10 �0.08 0.22 0.19 0.25
Room2 0.23 �0.11 �0.04 0.30 0.20 0.29
Room3 0.28 �0.06 0.02 0.30 0.18 0.28
Livingroom �0.06 �0.06 0.01 0.10 0.28 0.36
Average 0.07 �0.08 �0.02 0.23 0.21 0.30

Notes. ERR ¼ PN
k¼0ðTsimulation � TexperimentÞ=N, RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼0ðTsimulation � TexperimentÞ

2
=N

q

Table 2
Computational time comparison of the open-loop simulation for the 26th-order model, full-order model, and TRNSYS model for the radiant floor heating system.

Step size 5 min 10 min 30 min

Simulation durations 30 days 365 days 30 days 365 days 30 days 365 days

26th-order model (s) 1 2 0.839 1 0.771 0.909
Full-order model (s) 1 5 1 3 0.783 1
TRNSYS model (s) 11.72 109.41 6.68 55.78 5.34 20.42
26th-order model vs full-order model 0% �60% �16% �67% �2% �9%
26th-order model vs TRNSYS model �91% �98% �87% �98% �86% �96%

Fig. 15. Computational time comparison of the open-loop simulation and model predictive control for the 26th-order model, full-order model, and TRNSYS model for the
radiant floor system.
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longer than that of the 26th-order model. The computation time of
the TRNSYS model ranges from 5.34 to 109.41 s. The computation
time of the TRNSYS model increases significantly as the simulation
step size decreases and the simulation duration increases. It can be
seen that the computation time of the 26th-order model is much
lower than that of the TRNSYS model for the simulation of the radi-
ant floor, 86% to 98% lower than that of the TRNSYS model, and up
to 2.5 times lower than that of the full-order model. The reduced-
13
order model can effectively reduce the computational cost of the
radiant floor model.

Model predictive control, as advanced intelligent control tech-
nology, is increasingly used in building air conditioning control
systems because of its rolling optimization and good self-
adaptability. Model predictive control has tight requirements on
the computation effort of predictive models, and the redundant
computation of complex predictive models is bound to a degrada-
tion in the robustness of model predictive control. Table 3 and



Table 3
Computational time comparison of model predictive control (MPC) for the 26th-order model and full-order model for the radiant floor heating system.

Step size 5 min 10 min 30 min

Simulation durations 30 days 365 days 30 days 365 days 30 days 365 days

26th-order model (s) 11 68 7 37 5 16
Full-order model (s) 29 311 16 148 8 57
Relative ratio �62% �78% �56% �75% �38% �72%
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Fig. 15(b) show the computational time comparison of model pre-
dictive control (MPC) for the 26th-order model and full-order
model for the radiant floor heating system when the simulation
step sizes are 5 min, 10 min, and 30 min, and the simulation dura-
tions are 30 days and 365 days, respectively. By comparing with
Table 2, it was found that the simulation time of the radiant floor
system with model predictive control increased significantly. The
simulation time for the full-order model ranged from 8 to 311 s,
while the simulation time for the 26 models was only between 5
and 68 s. The 26th-order model used for model predictive control
can effectively reduce the simulation time by 38%~78% compared
to the full-order model, reducing the simulation time and CPU load
on the computer, greatly improving the computational efficiency of
model predictive control, and therefore strengthening the response
performance and enhancing the robustness of model predictive
control. The focus of this research is to improve the computational
efficiency of the radiant floor system by developing the reduced-
order model, and more in-depth studies on the dynamic properties
of the model predictive control system are expected to be further
developed in the future.
3. Conclusion

To address the problem that advanced model predictive control
requires high computational efforts, a fast and high-fidelity
reduced-order model of a multi-zone radiant floor system is pro-
posed by applying the efficient balanced truncation method which
is commonly used in modern control research field. Based on Han-
kel singular derived from the controllability and observability anal-
ysis and the frequency-domain response bode plots of the model, a
reduced-order model is obtained that accurately characterizes the
dynamic performance of the system with much lower computa-
tional effort. The accuracy of the reduced-order model is verified
by comparing it with the experimental test results, the TRNSYS
model, and the original order model. Besides, the reduced-order
model can greatly improve the robustness of the model predictive
control system.

The following conclusions can be drawn: (2) The 26th-order
model of the multi-zone radiant floor system was obtained based
on the HSVs of the balanced truncation method from the full-
order model, which is sufficient to characterize the dynamic ther-
mal performance of the original model. (3) The radiant floor sur-
face temperatures, return water temperature, zone air
temperature, and the average internal surface temperature of the
unheated envelopes of the 26th-order model are in high agreement
with the experimental results, TRNSYS model, and the full-order
model, proving the high precision and accuracy of the 26th-order
model, where the root mean square errors are 0.41℃, 4.19℃,
1.88℃, and 0.30℃, respectively. (3) The computational time for
the open-loop simulation of the 26th-order model was reduced
by 86% to 98% compared to that of the TRNSYS model. The compu-
tational time for the model predictive control of the 26th-order
model was significantly reduced by 38%~78% compared to that of
the full-order model, which greatly reduces the simulation time
and CPU load on the computer, improving the computational effi-
ciency of model predictive control, and therefore strengthening the
14
response performance and enhancing the robustness of model pre-
dictive control.
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