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ABSTRACT

One of the main obstacles to wider applications of radiant floor heating systems with great thermal com-
fort and energy efficiency is the long response time caused by large thermal inertia and little research has
been conducted to effectively address this issue. In this study, an optimal control strategy based on a
thermal response time prediction model for radiant floor heating systems was proposed by applying
the gaussian process regression (GPR) algorithm. First, a comprehensive database of the thermal response
time for various scenarios based on different building configurations, radiant floor, and weather charac-
teristics was obtained by parametric simulations after base-case building validation. Then a sensitivity
analysis of the response performance of the seven explanatory variables by Pearson correlation coeffi-
cients was conducted and a theoretical explanation was provided. Besides, the response time prediction
model based on the GPR algorithm with a larger R? of around 0.96 was obtained by an in-depth compar-
ison with commonly used machine learning algorithms such as multiple linear regression, random forest,
and support vector machines. Its accuracy was verified by cross-validation and a 25% database. Finally, an
optimal control strategy based on the response time prediction model was proposed which can reduce
the response time from 96 ~ 188 mins to 44 ~ 75 mins, achieving a reduction of 41% ~ 64% while keeping
the comparative power consumption. Therefore, the proposed optimal control strategy can effectively
reduce the thermal response time of radiant floor heating systems and improve the indoor thermal com-

fort during the thermal response phase without sacrificing power consumption.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Space heating areas of residential buildings rose to 814399.26
million square meters while accounting for about 74% of the total
heating areas of China in 2019 according to China Urban-Rural
Construction Statistical Yearbook 2019 [1]. Better thermal comfort
and great potential of energy-saving enable the widespread appli-
cation of radiant heating and cooling systems in residential build-
ings as an alternative to conventional HVAC systems [2,3]. State-of-
the-art control strategies which have been demonstrated to be
beneficial to the optimal operation for a variety of space heating
systems are encouraged to be implemented into practice for
exploiting the energy-saving potential of radiation systems [4,5].

The control methods and strategies applied to the radiant heat-
ing and cooling systems [6] mainly include the bang-bang control
[7], water temperature control, water flow control [8]. Bang-bang
control refers to the switch control where the preset control will
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be activated when the target variable is above the upper limit or
below the lower limit of the control interval. There is no control
action while the control target is within the range of the control
interval. The bang-bang control can be easily put into implementa-
tion as the most simplified and feasible control method [9]. The
only two states of start or stop of the bang-bang control are on
operation when the thermal zones are occupied or not usually
[10,11]. However, its applicable implementation on radiant heat-
ing and cooling systems has been hindered by the larger thermal
inertia compared with conventional space heating systems [12].
The intense zone air temperature overshoot and lower control flex-
ibility have demonstrated the poor dynamic performance and
energy efficiency of the bang-bang control’s application on radiant
heating and cooling systems [13].

Water temperature control is an open-loop or closed-loop con-
trol system that uses water temperature as the controlled variable
[14]. It is a way to regulate the heat supply from the HVAC system
to the thermal zones by controlling the variable water temperature
to accommodate fluctuations of the building heat load caused by
the outdoor environment changes [15]. Keeping a constant water
flow rate ensures a stable hydraulic network balance and brings
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Nomenclature

Tresp Response time of radiant floors, second.
Qheatload  Heat load of radiant floors, W/m?.
Qsupply  Heat supply of radiant floors, W/m?.

Tamb Ambient temperature, °C.
T, set Zone air temperature setpoint, °C.
Qequip  Heat gain from internal equipment, W/m?.

Qinfilration  Heat gain from infiltration loss, W/m?.
Qsor  Heat gain from solar radiation, W/m?.

Tws Water supply temperature, °C.

Sw Water velocity in buried pipe of radiant floors, m/s.

do Pipe diameter of buried pipe of radiant floors, m.

dx Pipe spacing of radiant floors, m.

dfitter Filler course thickness of radiant floors, m.

T, Initial zone air temperature, °C.

S|V Shape factor.

R? Determination coefficient.

Q, Power consumption of the air-source heat pump, kWh.

Q5 Heat supply of the air-source heat pump, kWh.

CcoP Coefficient of performance of the air-source heat pump.
Abbreviations

GPR Gaussian process regression.

ML Machine learning.

MLR Multiple linear regression.

RF Random forest.

SVM Support vector machine.

GP Gaussian process.

MBE Mean bias error.
CV(RMSE) Coefficient of variation of the root mean square error.
MAE Mean absolute error.

MSE Mean squared error.
RMSE  Root mean square error.
GA Genetic algorithm.

ANN Artificial neural network.

the advantages of simple management and easy operation [16].
However, it also leads to higher power consumption while large
public buildings or centralized heating systems use only water
temperature control. The water temperature control system will
encounter a series of problems such as poor system stability, the
high frequency of adjustment action, and the large static difference
[17]. The system greatly influenced by the ambient environment
cannot achieve complex control algorithms [18]. Besides, water
temperature control has typical hysteresis characteristics that
many factors contribute to [19].

Water flow control is a regulation method that maintains the
designed water supply temperature throughout the heating period
and constantly changes the water flow rate at the heat source as
the time-varying ambient temperature to accommodate the vari-
able heat load [20,21]. This type of control method for heating
and cooling systems adopts the exact different control variable
compared with the water temperature control while sharing the
opposite advantages and disadvantages of the control performance
[22]. The rapidly decreasing water flow rate often causes serious
non-homogeneous heat distribution in multi-zone heating systems
as the outdoor temperature rises [23,24]. At the same time, con-
stantly changing the water flow rate of the network as the ambient
temperature changes demand a more complex system configura-
tion [25] and often requires variable speed pumps to achieve flow
regulation in practice operation.

In addition to the above conventional control methods [2], the
prevalence of intelligent technology has given rise to many smart
control methods applicable to the building industry for energy effi-
ciency improvement [26], better indoor thermal comfort [27],
enhanced indoor pollutant concentration control, etc. [28] Jingjuan
(Dove) Feng et al. [4] developed and calibrated the simplified
dynamic heat transfer model for the radiant slab system and a
real-time MPC (model predictive control) was further was estab-
lished for the built building model. Compared with the rule-
based control strategy, the real-time MPC can achieve a 55% reduc-
tion in cooling tower consumption and a 25% reduction in water
pump consumption while maintaining the zone operative temper-
ature at the EN 15251 Category II level for 95% occupied duration.
Xiufeng Pang et al. [29] proposed the simplified MPC toolchain for
better implementation in the building industry by eliminating the
main barriers of the high computational cost and challenging com-
plexity after validating the effectiveness of the developed MPC
with experimental measurements. The established MPC was
applied to the radiant slab system in the FLEXLAB building test

facility at the Lawrence Berkeley National Laboratory and achieved
42% of water pump power reduction and 16% of energy consump-
tion saving compared with the heuristic control strategy.

Jaewan Joe et al. [30] developed a parametric identification-
based modeling approach for diverse thermal comfort require-
ments in multiple zones. This inverse modeling approach
enhanced the scalability and flexibility of the building model by
integrating individual sub-building models, and then the accuracy
of the modeling approach was validated with actual operational
data. The experimental results showed that the established dis-
tributed MPC reduced the electricity consumption of the radiant
floor cooling system by 27% relative to the feedback control and
achieved diverse thermal comfort for different office areas at the
same time. Besides, they implemented the proposed MPC into
the practice operation of the radiant floor system which can mini-
mize the energy consumption and running cost according to the
outdoor weather and building load prediction [31]. The field imple-
mentation yielded 34% of running cost savings and 16% of energy
consumption reduction for the cooling and heating seasons com-
pared with the feedback control, respectively. Dongliang Zhang
et al. [32] developed the state-of-the-art MPC for the radiant ceil-
ing cooling integrated with an underfloor ventilation system and
reduced energy consumption by 13.2% compared with PID control
in the field implementations. Furthermore, the MPC proposed by
them yielded 17.5% energy saving compared with the PID control
for the radiant floor cooling combined with an underfloor ventila-
tion system while maintaining comparative or better thermal com-
fort [33].

Martin Schmelas et al. [ 18] proposed an adaptive and predictive
control for the thermo-active building systems based on the mul-
tiple regression algorithm, which can achieve better thermal com-
fort and load shift after validation by the experimental
measurements. Then this proposed control approach was put into
practice for performance evaluation of the energy-saving and ther-
mal comfort improvement, and more than 41% of energy savings
and 95% of the occupied time of the comfort norms ISO7730 and
DIN EN 15251 were demonstrated by experiment results [34]. Fur-
thermore, this novel adaptive and predictive control method was
applied to the operation of a passive seminar building for about
nine months along with the conventional control strategy for the
thermo-active building systems. The operation results showed that
the running time of the water pump was reduced largely and the
energy-saving up to 26% was obtained while maintaining a better
thermal comfort [19].
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Georgios Lymperopoulos and Petros Ioannou [35] proposed a
distributed adaptive control approach for the zone air temperature
regulation of the multi-zone building HVAC systems by employing
online learning technology. The dynamic performance of this con-
trol method was evaluated in a six-zone building and a primary
school building in EnergyPlus. The simulation results showed that
the introduction of adaptive learning brought more accurate zone
air temperature control and energy efficiency benefits. Yuebo
Meng et al. [36] proposed an occupancy-based predictive control
method by applying the deep learning image detection technology,
by which the occupancy heat load was available by estimating the
real-time occupants’ numbers. The simulation results of a student
activity center and a small-scale office building confirmed the
improved performance on the environmental comfort and faster
system response.

To address the problem of high accuracy on building models
and cost-ineffective sensor installation, Shunian Qiu et al. [37]
developed a model-free optimal control method for a building
cooling water system based on reinforcement learning. The simu-
lations results indicated that the lower energy efficiency of the
model-free control method was caused by the insufficient learning
of fewer than three months while it can still provide promising
application prospects. Dasheng Lee et al. [21] developed a smart-
valve-assisted model-free predictive control for no data available
situation for the chiller plants based on reinforcing learning. The
experimental measurements of a hospital, an office building, and
a factory demonstrated the 30% reduction in energy consumption
and the prompt scalability compared with other massive data-
based intelligent control technology.

In summary, MPC has been increasingly applied in the conven-
tional space heating and cooling systems, thermo-active or radiant
building systems in a lot of previous research while the high compu-
tational cost and cost-ineffective implementation have always been
the obstacles that hindered the widespread application in the actual
buildings, particularly in residential buildings due to the compli-
cated installation and high initial cost for users [38,39]. Further-
more, the control performance of other model-based adaptive
control methods is highly dependent on the model accuracy and
adequate sensors, which are principally difficult to access in resi-
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| |
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dential buildings [40]. Despite research efforts placed on advanced
control methods [41], few studies have been oriented from the ther-
mal response time performance perspective, whereas the longer
thermal response time performance is the main obstacle hindering
the efficient operation of radiant floor heating systems compared to
conventional spacing heating systems. The prediction model of the
thermal response time of radiant floor heating system is supposed
to be developed to solve the problem of long thermal response time
and indoor thermal comfort performance degradation, while the
previous researches focus on the building energy prediction model.

In this study, an optimal control strategy based on a thermal
response time prediction model for radiant floor heating systems
is proposed and evaluated as shown in Fig. 1. First, a base case
building model is developed by TNRSYS and validated by experi-
mental results. Then, parametric simulations based on various
building characteristics, radiant floor features, and weather infor-
mation are conducted to obtain a comprehensive database of ther-
mal response performance for all these cases. In addition, a
sensitivity analysis of the response performance to all those
explanatory variables is performed by Pearson correlation coeffi-
cients, and a comprehensive theoretical interpretation of the sensi-
tivity analysis results is presented. After that, the response time
prediction model of radiant floor heating system based on GPR
algorithm is obtained by an extensive comparison of commonly
used machine learning (ML) algorithms such as multiple linear
regression (MLR), random forest (RF), and support vector machine
(SVM). And its accuracy is verified by cross-validation and 25%
database collection. Finally, an optimal control strategy based on
the response time prediction model is proposed and compared
with the conventional intermittent operation strategy in terms of
response performance and energy efficiency.

2. Base case calibration and parametric simulation

2.1. Base case calibration

The residential building equipped with a radiant floor heating
system located in Chongqing, China was selected as the base case,

‘ ’ Parametric simulations ‘ ’Response performance analysis
o Explanatory variables o Sensitivity analysis
> planatory > ty Y
selection e Pearson correlation
e 2148 simulations coefficient
o Database collection o Theoretical explanations

‘ Black bovx model ‘

’ Control strategy optimization ‘
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h 2 k4
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MLR RF e MAE. MSE N Optimized control anventional ‘
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Fig. 1. The flow chart of the research.

3



Q. Chen and N. Li

which includes three thermal zones of two bedrooms and a living
room. The building envelope and configuration design have ful-
filled the required energy-saving standard and laws in this area.
The total area of the residential building is 50 m? and the heating
pipes buried area is 40 m? which accounts for about 80% of the
flooring area. The indoor configurations and the design of the heat
radiator are shown in Fig. 11 and Fig. 12 in the control strategy
optimization section. Consequently, this information has not to
be repeated in this section. The pipe spacing, the pipe diameter,
the pipe wall thickness, the thermal property, and the ambient

Table 1

Energy & Buildings 263 (2022) 112044

conditions of the building envelopes are shown in Table 1. The
building model scheme for simulation in the TRNSYS environment
is displayed in Fig. 2. The ambient temperature, relative humidity,
and solar radiation recorded by the meteorological stations were
used for the simulation boundary. The infiltration loss was
assumed as 1 times/h according to the building design description.
No occupancy and other equipment heat gain were involved dur-
ing the experimental period.

The dynamic simulation result can be guaranteed after the reli-
able base case building calibration. The interior surface tempera-

The pipe spacing, the pipe diameter, the pipe wall thickness, the thermal property, and the ambient conditions of the building envelopes information.

Envelopes Material

Heat transfer coefficient
(W/m? - K)

Thermal resistance(m? - K/W)

Cement mortar 20 mm
Inorganic insulation mortar 30 mm

Exterior Walls

1.10 0.91

Sintered shale porous brick masonry 240 mm

Cement mortar 20 mm

Partition walls Cement mortar 20 mm

1.46 0.69

Sintered shale porous brick masonry 240 mm

Cement mortar 20 mm
Floor Ceramics 10 mm
Active layer for heating
Concrete backfills 50 mm
XPS 20 mm
Cement mortar 20 mm
Reinforced concrete 120 mm
Cement mortar 20 mm
Door Wooden doors
Exterior Windows Plastic window frames
(25% of window frame area)
6 + 9A + 6 double glazing

0.99 1.01

247 0.40
2.50 0.40

Pipe spacing 100 mm Pipe wall thickness 1.2 mm
Pipe diameter 16 mm
Average ambient temperature 11.7 °C Average relative humidity 81%
Maximum solar radiation 610 W/m?
-
:;J ot |
l - = > > /? N

Radfriou

0; »
‘D

Inputs 3

Weather data - ’ A F' A
2 = 1 v 4
= - Y ;
Y Psychrometrics Sky temp
=t > e
> >
v [ s =
4 Equa 4 Output 1
- 7
|55 > > »> >l
Boudary Building Tz
Y Y
—_— )\
> N Lyp— 2 )
[ =22
Equa-2 Output 2

Fig. 2. The building model scheme for simulation in TRNSYS environment.
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tures of the building envelop and the vertical zone air tempera-
tures at different heights were monitored with a 5-minute interval
and measured by T-Type thermocouples with a relative percentage
of less than 5%, which fulfilled the error limitations for effective
validation. The T-Type thermocouples measured the height of
1.1 m to the floor and the interior surfaces of thermal zones. The
T-Type has been validated by the thermostatic sink for ensuring
measurement accuracy. The comparison between the experimen-
tal and simulated radiant floor surface temperatures and zone air
temperatures is illustrated in Fig. 3 and Fig. 4, respectively. Two
error indicators of the mean bias error (MBE) and the coefficient
of variation of the root mean square error (CV(RMSE)) are consid-
ered and calculated for the base case building validation according
to the credible standards and guidelines including the ASHRAE
Guideline 14 [42], Measurement and Verification of Federal Energy
Projects (FEMP) [43], and International Performance Measurement
and Verification Protocol (IPMVP) [44].

The two error indicators of MBE and CV(RMSE) [45,46] were
calculated by using the formulae (1) and (2). The calibration crite-
ria of the credible standards and guidelines and two calculated
error indicators for the base case calibration are shown in Table 2.
MBE and CV(RMSE) of the radiant floor surface temperatures and
the zone air temperatures are within the applicable ranges of the
credible standards and guidelines mentioned above.

MBE = Z?‘:l (Ml — Sl)

1
Z:\Ilei ( )

((M; = Si)*/N)

ZiN:1Mi
N

N
i=1

1

CV(RMSE) =
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Where M; and S; are the measured and simulated data at the instant
i, respectively. N is the number count of the calibration values.

2.2. Parametric simulation

A reliable database should be obtained for the development of
high-fidelity prediction models for thermal response times of radi-
ant floor heating systems. A variety of explanatory variable scenar-
ios are developed for the comparative consideration of the
influential factors including boundary conditions such as water
supply temperature, ambient temperature, buried pipe specifica-
tions. In this research, the main influential factors of the thermal
response performance of the radiant floor are considered into con-
cern including the pipe diameter, the pipe spacing, the water sup-
ply temperature, the water velocity.

T _ { Qheatload {f(Tamm Tzi7 S/V7 Qequip7 Qinfiltratiom Qsolar)
resp —

qupply f(TWS7 SW, d07 dX7 dfiller)

3)

The influential factors contribute to the thermal response time of
radiant floors preliminarily estimated as Eq. (3). The response time
of radiant floors largely depends on the building energy perfor-
mance and heat supply capacity of radiant floors. The building
energy performance can be correlated with
Tamb7TZi7S/V7 Qequip7 Qinfiltratiom Qsolar etc. by USing the regression
analysis based on reliable database collection in previous research
[47]. The heat supply capacity of radiant floors can be estimated
as a predictive function of parameters such as Tys, 9w, do, dx, ditter,
etc. by applying a variety of intelligent algorithms [48,49] or regres-
sion algorithms [18]. The construction methods for radiant floor
systems are mainly divided into the floating screed floor radiant
heating and pre-grooved insulation board floor radiant heating,
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Fig. 3. The comparison between the experimental and simulated radiant floor surface temperatures.
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Table 2
The calibration criteria of the credible standards and guidelines, and two calculated error indicators for the base case calibration.
Calibration Criteria Indicator ASHRAE FEMP IPMVP
Criteria (%) MBE +10% +10% +5%
CV(RMSE) 30% 30% 20%
Base case Teioor Tzone
MBE CV(RMSE) MBE CV(RMSE)
Zone 1 1.67% 2.87% 1.34% 2.65%
Zone 2 1.34% 2.35% -1.16% 2.50%
Zone 3 1.77% 3.10% -1.19% 2.46%

and the former is considered as the research objective due to the
lower investment, better thermal insulation performance, and
advanced construction technology. The filler course for the floating
screed floor radiant heating is required to be more than 50 mm
according to the standard limitations and it is assumed constant
at 50 mm which is made of cement mortar since the larger filler
course thickness causes worse heat transfer and thermal response
performance.

Besides, the ambient temperature, the initial air temperature,
and the shape factor can characterize the heat load of the building

Table 3

The explanatory variables for the parametric simulation.
Explanatory variables Level 1 Level 2 Level 3
Pipe diameter (mm) 16 20 25
Pipe spacing (mm) 50 100 150
Water velocity (m/s) 0.8 1 1.2
Water supply temperature (°C) 40 45 50
Initial zone air temperature (°C) 15 16 17
Ambient temperature (°C) 5 7 10
Shape factor 0.20 0.26 0.45

envelopes during the response time. In summary, the pipe diame-
ter, the pipe spacing, the water supply temperature, the water
velocity, the ambient temperature, the initial zone air temperature,
and the shape factor are selected as the main influential and
explanatory variables for the parametric simulation scenarios,
which is shown in Table 3.

The commonly used pipe diameters for radiant pipes are
16 mm, 20 mm, and 25 mm. The three levels of pipe spacing are
selected for simulation since the smaller pipe spacing of 20 mm
is not suitable for the situation of 25 mm pipe diameter and the
larger pipe spacing of more than 150 mm will cause the intense
inhomogeneous distribution of radiant floor surface temperatures
and insufficient heating capacity. The water velocity is required
to be more than 0.25 m/s in the radiant pipe and 0.8 m/s, 1 m/s,
1.2 m/s are typically employed and selected for simulation accord-
ing to the pre-test results of different water velocity situations. The
water supply temperatures of 40 °C, 45 °C, 50 °C are obtained as
this research aims at the thermal response performance of radiant
floors which undoubtedly requires relatively higher water temper-
ature in this heating phase and lower water temperature such as
35 °C will cause the far lower heat capacity supply and extremely
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larger response time. The higher initial zone air temperature
means lower peak heat load in the thermal response phase and
leads to a smaller response time for the zone air temperature to
reach the setpoint. And the lowest initial zone temperature during
the intermittent period from 8:00 to 18:00 was around 15 °C in the
experiments and pre-simulations. This is the reason why initial
zone air temperatures of 15 °C, 16 °C, 17 °C are identified. And
the measured ambient temperatures ranged from 5 °C to 10 °C in
winter in the experiments and the shape factors of 0.2, 0.26, 0.45
are also considered as the main influential variable since it has a
significant impact on building energy performance demonstrated
in previous literature which has also presented the negligible influ-
ence of other variables such as solar radiation [47]. Therefore, a
total of 2148 simulation results covering different explanatory
variable combinations is collected for further research on the ther-
mal response performance of radiant floor heating systems.

2.3. Sensitivity analysis

Before the black-box model development of the response time
prediction, it is crucial to guarantee the dependence among all
the selected explanatory variables. An autocorrelation plot, Pear-
son and Spearman correlation coefficients, and the clustering
methods are the widely used methods for variable dependency
recognition. The Pearson correlation coefficients are applied in this
research and the correlation matrices among explanatory and
response variables are shown in Fig. 5. The Pearson correlation
coefficients ranged between —0.002 and 0.047 which explained
the entire dependency and their negligible collinearity among
selected explanatory variables. Besides, the initial zone air temper-
ature is the most dominating variable for the thermal response
time of radiant floor systems demonstrated by the largest Pearson
correlation coefficient of —0.604. This is consistent with common
sense that higher initial zone air temperature leads to rapid ther-

Tws -0.05 -004 |-047 0.02
Tzi  -0.03 -0.03 0
Tamb 0 0 -023 0.01

do -001 -0.01 -029 -0.01

Vw  -0.01 0 -0.06

Tresp -0.06
dx 0

SNV 0.01 04 -0.01
c;\ &+ /\&G,Q N
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mal response and shorter response time. Then, the pipe spacing,
the water supply temperature, and the shape factor have the fol-
lowing comparative influence on the response time which is also
consistent with the intuitive experimental and simulation results.
The twice larger pipe spacing of 100 mm is capable of far lower
heat supply and the response time is highly longer than that of
50 mm pipe spacing. Therefore, the pipe spacing and the response
time are positively correlated. The higher water supply tempera-
ture will cause the rapid radiant floor surface temperature and
zone air temperature to rise. The larger shape factor of buildings
represents the higher heat load compared with that with smaller
ones and it takes more response time for the radiant floor heating
system to reach the design conditions. Moreover, the pipe diameter
and ambient temperature are less related to the response time
demonstrated by the relatively smaller Pearson correlation coeffi-
cients. And the water velocity has the lowest and negligible impact
on the response time indicated by the Pearson correlation coeffi-
cient of —0.06 which identifies that increasing the water flow rate
is an ineffective approach to improve the radian floor response.

3. Development of response time prediction model
3.1. Gaussian process regression

Gaussian Process Regression (GPR) is a non-parametric model
that uses a Gaussian Process (GP) before data regression analysis.
The GPR model assumptions include both noise (regression resid-
uals) and Gaussian process prior and its solution is performed by
Bayesian inference. GPR is theoretically a universal approximator
for any continuous function in the compact space without restrict-
ing the kernel function forms. Considering the training set
extracted from an unknown distribution, the GPR model solves
the problem of predicting the values of the response variables

0.03 0.02 0.05
0.01 0.02 0.05
0.01 0.02 0.02
Corr
1.0
0.01 0.01 0.03 -
0.5
0.0
-0.01 0.01 0 0.02 . 05
-1.0
-029 -0.23
-0.01 0 -0.03 -0.04
-0.01 0 -0.03 -0.05
0o 0 N )
> «ée 2N N

Fig. 5. Correlation matrices among explanatory and response variables.
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under the new input vector and training data. A linear regression
model takes the following form.

y=xp+¢ 4)

where ¢ € N(0, ¢?) and the error variance ¢? and the coefficient p
are estimated from the data. The GPR model explains the response
f(x),i=1,2,---,n. by introducing a Gaussian process (GP) latent
variable and an explicit basis function h. The covariance function
of the latent variable captures the smoothing properties of the
response, and the basis function projects the input x into a p-
dimensional feature space. GP is a set of random variables such that
any finite number of random variables have a joint Gaussian
distribution.

If {f(x),x € R%} is a GP, then n observations xi,X,,---,X, are
given, and joint distribution of random  variables
f(x1),f(x2),---,f(xn) is Gaussian. Now consider the following
model.

h(x)" B+ f(x) (5)

where f(x) GP(0,k(x,x")), that is, f(x) comes from a zero-mean GP
with a covariance function k(x,x'). h(x) is a set of basic functions
that transform the original feature vector x in R? into a new feature
vector h(x) in RP. This model represents a GPR model. An instance of
the response y can be modeled as follows.

Pilf (x:), %) Nilh(x)" B + f (x:), 0%) (6)

Therefore, there is a latent variable f(x;) introduced for each obser-
vation x; which makes the GPR model nonparametric. In vector
form, this model can be transformed into the following.

PWYIf.X) N(HB + f.0]) )
Xi Vi h(xi) g(xl)

Where X = X:2 Ly = y:Z , H= h(XZ) i - (XZ)
A Vi h(xT) f(x,)

The joint distribution of latent variables f(x1),f(x2),---,f(xa) in
the GPR model is described as follows.

P(f|X) N(f|0,K(X,X)) (8)
k(x1,%1)

Where K(X,X) = :
k(Xn,%1)

k(x1,%n)

k(x,,., Xn)

The covariance function k(x, x') is usually parameterized by a set
of kernel parameters or hyperparameters, 0. k(x, x') is often written
as k(x,x|0) to explicitly indicate the dependence on 6. The basis
function coefficients g, the noise variance ¢2, and the hyperparam-
eters 0, of the kernel function from the data can be estimated while
training the GPR model. The principal description of the GPR model
can trace back to the MATLAB documents [50].

3.2. Performance comparison of ML algorithms

The commonly used ML algorithms for the response time pre-
diction of radiant floor heating systems are developed and evalu-
ated after the parametric simulation collection. There are a
variety of alternative ML algorithms that have been successfully
employed in the previous research on building energy performance
and other aspects except for GPR [51]. There are merits and demer-
its for these ML algorithms depending on the research objective
and application situations. Multiple linear regression (MLR) is
applied largely in the field of building energy performance models
with simple configuration procedures and no expertise experience
based on the extensive data collection which cannot be a solution
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for explaining and predicting the strongly nonlinear problems.
Genetic algorithm (GA) is a powerful optimization method applied
in the building energy performance sector and others derived from
Darwin’s evaluation theory, which can address the complicated
problem and give a couple of alternative solutions. However, a sin-
gle genetic algorithm code does not provide a comprehensive rep-
resentation of the optimization problem. Genetic algorithms also
tend to converge prematurely and are usually less efficient than
other traditional optimization methods.

Besides, artificial neural network (ANN) is a popular optimiza-
tion method in the field of building energy performance. The
exhausted database collection and time-consuming pretreatment
process required by ANN is indeed crucial for the great reliability
and enough accuracy of the developed building energy perfor-
mance while the reliable and broad enough database is also
demanded, although it has been widely employed and excellent
with dealing with complicated and non-linear model configuration
problem. Moreover, RF which has a wide range of applications is an
algorithm that integrates multiple trees through the idea of inte-
gration learning. method. It has excellent accuracy and can handle
input samples with high-dimensional features without requiring
dimensionality reduction. SVM is a class of generalized linear clas-
sifiers that performs binary data classification in a supervised
learning manner. The optimization problem of SVM considers both
empirical and structural risk minimization and is therefore stable.

In this section, the predictive performances of these ML algo-
rithms including MLR, RF, SVM, and GPR are compared and evalu-
ated after the corresponding models are developed. All these
algorithms programming has been finished in MATLAB. Then a
comparative accuracy is obtained for the response time prediction
model for radiant floor heating systems. The dataset obtained from
the parametric simulations is divided into two sections while 75%
of the dataset is used for model training and 25% of it is applied for
model validation. The overfitting problem is a frequent problem
during the ML model training, which means that the trained model
cannot predict the situation outside the training dataset even
though it can match the training data well. Some of the data infor-
mation known at the time of training will affect the accuracy of the
final evaluation results when using test data to tune the model
parameters. It is a common practice to subdivide the training data
into a portion as validation data, which is used to evaluate the
training model performance. In this study, five-fold cross-
validation is used for model construction. The principle of five-
fold cross-validation is to divide the training dataset into five equal
parts and use one of them as the test data and the other four as the
training data. The five-fold cross-validation requires five training
and validation processes to ensure that all five parts of the data
have been involved in the model training. The five models are eval-
uated separately in the validation set, and the final evaluation
errors are summed and averaged to obtain the cross-validation
errors.

The comparison results between predicted values and actual
values of the thermal response times based on four typical kinds
of ML algorithms are shown in Fig. 6. SVM and GPR can achieve
better response time prediction performance while MLR and RF
are less sensitive and insufficient to demonstrate the response time
prediction models. The predicted and actual values can be consis-
tent with each other greatly when the response time is less than
200 min. The predicted value gradually tended to be less than
the actual one for MLR and the predicted value deviated from the
actual one at a larger scale for RF, while the prediction models
based on SVM and GPR can also demonstrate the actual response
time trends with few and acceptable discrepancies. Besides, the
residual results between predicted values and actual values of
the thermal response times based on four typical kinds of ML algo-
rithms are shown in Fig. 7. The discrepancies between actual and
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Fig. 6. Comparison results between predicted values and actual values of the thermal response times based on four typical kinds of ML algorithms.

predicted values are illustrated intuitively and clearly. The residual
values of MLR and RF were largely higher than that of SVM and GPR
during both short-period and long-period response time.

Comprehensive statistical analysis on predictive model accu-
racy is evaluated by five evaluation criteria displayed as follows,
which provide the quantitative support for the alternative high-
fidelity black-box model selection.

1 N
MAE = & 2; IM; — Si| 9)
MSE — ; M; —S;)? 10
:N;( i—Si) (10)
N
RMSE = %Z(Mi—si)z (11)
i=1
N Q2
RP=1 i (M 7‘)2 (12)
St (v )

Evaluation results of four ML models based on metrics of MAE, MSE,
RMSE, and R? are shown in Fig. 8. The GPR algorithm achieved the
best predictive performance among all the analyzed ML algorithms
with the lowest MAE, MSE, RMSE (5.89, 215.88, 14.69), and highest
R? (0.96). The SVM algorithm had the slightly comparative perfor-
mance of the response time predictive model with higher MAE,
MSE, RMSE (6.92, 308.25, 17.56), and lower R? (0.94). The MLR algo-
rithm had the satisfactory performance of the response time predic-
tive model with MAE, MSE, RMSE (16.27, 619.61, 24.89), and R?
(0.89). The RF algorithm failed to characterize the response time
performance of radiant floor heating systems with the highest
MAE, MSE, RMSE (17.42,926.11, 30.43), and lowest R? (0.83). There-
fore, the GPR model is selected for the response time prediction of
radiant floor heating systems due to the optimal regression
performance.

3.3. GPR model validation

As mentioned before, 25% of the dataset was retained for the
model validation while 75% of that was used for model training
and cross-validation. The prediction accuracy can be evaluated
through the retained dataset without involving the model develop-



Q. Chen and N. Li

Energy & Buildings 263 (2022) 112044

200 . 2001
MLR . i :
150 R*=0.89 : 150, R?=0.83 .
. ¢ o
100} o 100}
< 50l € 50
g 50 £
s ER
s ° 3
2 Z
& 50 ¢ o 507
-100 | -100 .
_150 - _150 | . .
(a) (b)
-200 - : : : : 200 . - - - - :
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Actual value (min) Actual value (min)
200 200 -
SVM . GPR =
2= . 2—
150 R2=0.94 . 150, R2=0.96 -
. . ... ®
100 e
£ 50f fayed <
£ R £
= . < gAYt =
T o e :
he! h v ko)
17 73
@ 50} <
-100 - -100 -
-150 -150 |
(©) (d)
-200 . . ' ' : “- 200 . . - . . -
0 100 200 500 600 0 100 500 600

300 400
Actual value (min)

200 300 400
Actual value (min)

Fig. 7. Residual results between predicted values and actual values of the thermal response times based on four typical kinds of ML algorithms.

SVM 6.92
RF 17.42
MLR 16.27
0 5 10 15 20
(a) MAE
GPR | | 14.69
SVM 17.56
RF 3043
MLR 24.89
0 5 10 15 20 25 30 35
(c) RMSE

GPR
SVM 308.25
RF 926.11
MLR 619.61
0 200 400 600 800 1,000 1,200
(b) MSE
GPR 1 0.96
SVM | 0o
RF | os3
MLR [ 089
0 0.2 0.4 0.6 0.8 1 1.2
(d)R?

Fig. 8. Evaluation results of four ML models based on metrics of MAE, MSE, RMSE, and R?.

10



Q. Chen and N. Li

600 1

500 |

S
o
o

o

w
o
o

50

Predicted value (min)
S
o

1001

200 300 400 500
(a) Actual value (min)

100

Residual (min)

600

Energy & Buildings 263 (2022) 112044

200

150

100 |

-100

-150 1

-200
0 100 200 300 400

(b) Actual value (min)

500 600

Fig. 9. The prediction and residual results of the validation dataset.

ment which is judged by those metrics indicated before. The pre-
diction and residual results of the validation dataset are shown
in Fig. 9. The excellent consistency between predicted and actual
values and almost few residuals confirmed the great accuracy
and applicability of the GPR model for the response time predic-
tion. Furthermore, the quantitative evaluation metrics of MAE,
MSE, RMSE (6.10, 241.38, 15.54), and R? (0.96) highly close to the
training model evaluation results also contributed to the high-
fidelity model validation.

4. Control strategy optimization

Heat capacity and time-lag effects are important indicators to
be considered in the performance analysis of radiant heating sys-
tems during the design and operation phases [3]. To improve the
heating capacity of radiant heating systems, researchers have pro-
posed various approaches such as adding coatings to the surface
[52], changing the internal structure of radiant heating panels
[3,53], and increasing convective heat transfer on the surface of
radiant floors [54,55]. In addition, the thermal inertia of radiant
flooring is also an important factor affecting the performance of
the control system, and new radiant flooring is also trying to
reduce its thermal inertia by simplifying the structure of the floor,
to improve the thermal response speed of the radiant flooring sys-
tem [56]. The long thermal response time of the radiant floor heat-
ing system under intermittent operation due to the high thermal
inertia means that the indoor thermal comfort is far below the
demand level of indoor occupants during the thermal response
period. The long thermal response time of the radiant floor heating
system caused the serious overshoot and delay of the zone air tem-
perature regulation and control. To address this issue, the opti-
mized thermal repose time prediction-based control strategy for
radiant floor heating systems by applying GPR is proposed as illus-
trated in Fig. 10, which can predict the water supply temperature
and initial zone air temperature in advance that can afford to the
peak heat load supply at 18:00 (system starts running) and guaran-
tee the acceptable thermal response time according to the
response time prediction model.

Firstly, a reliable GPR black-box model based on the explana-
tory variables mentioned above was developed to predict thermal
response times for different ambient environments, radiant floor
configurations, and building envelope characteristics in the above

11
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|
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Fig. 10. The optimized thermal repose time prediction-based control strategy for
radiant floor heating systems by applying the Gaussian process algorithm.

sections. After that, the forecast weather information, the specific
building envelope, and radiant floor configurations are identified
and used to predict the demand zone air temperature setpoint
(8:00 ~ 18:00) and water supply temperature of the response time
to keep the thermal response time within acceptable ranges.
Therefore, this proposed optimal control strategy based on the
thermal response time prediction model can effectively improve
the indoor thermal comfort performance of the radiant floor heat-
ing system while reducing the peak load and energy consumption
of the system.



Q. Chen and N. Li

The proposed optimized control strategy is evaluated by simu-
lation of the radiant floor heating systems for the thermal response
time reduction, environment comfort improvement, and energy
efficiency performance. The schematical three-dimensional sketch
diagram of the three-zone building with radiant floor heating sys-
tems is shown in Fig. 11. The apartment is on the second floor and
between two neighboring units. The dimensional geometry, the
specific building envelope configuration, and component material
have been demonstrated above in the base case calibration. Among
all the alternative radiant floor configurations, the pipe diameter
and pipe spacing are 0.016 mm and 0.1 mm, respectively. The
water flow rates of the three thermal zones are 400 m?/h, 490
m?3/h, and 350 m3/h, respectively. The schematic drawing for the
radiant floor heating system is shown in Fig. 12. The radiant floor
heating system was supplied by the air-source heat pump or the
gas-fired furnace. The water tank serves as the heat change media
with the water splitter and water mixer which is connected with
the terminal radiant floors.
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Simulations under different operating conditions were devel-
oped to explore the potential of the optimal control strategy based
on response time prediction proposed in this study for fast thermal
response and energy efficiency in radiant floor heating systems
compared to the commonly used intermittent operation. The zone
air temperature and water temperature settings of optimized con-
trol strategy and intermittent operation under different case stud-
ies are shown in Table 4. T,; (The zone air temperature setpoint of
the intermittent period 8:00 ~ 18:00) of three zones were the same
with each other for case studies one and two where the average
ambient temperatures were at the typically higher level of
10.1 °C and relatively lower level of 5.7 °C, respectively. For case
study three, T, of three zones were different from each other
which were obtained following their different heat loads. Besides,
the energy consumption of the system mainly comes from the
air-source heat pump usually integrated into radiant floor heating
systems. The power consumption of the air-source heat pump
depends on the COP (coefficient of performance), which is related
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Fig. 11. Schematical three-dimensional sketch diagram of the three-zone building with radiant floor heating systems.
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Table 4
The zone air temperature and water temperature settings of optimized control strategy and intermittent operation under different case studies.
Case Control strategy Items Intermittent period Response period Other periods
Case 1 Optimized control T,(°C) 17 18 18
Tws(°C) 30 45 40
Intermittent control T,(°C) 18
Tws(°C) 40
Case 2 Optimized control T,(°C) 17 18 18
Tws(°C) 30 50 45
Intermittent control T,(°C) 18
Tws(°C) 45
Case 3 Optimized control T,(°C) Zone 1 Zone 2 Zone 3 18 18
16.5 17 16
T,(°C) 30 50 45
Intermittent operation T,(°C) 18
Tws(°C) 45

to parameters such as water supply temperature and ambient tem-
perature. The fitting results of COP of the air-source heat pump are
demonstrated in the following equations.

Q, =Q,/CoP (13)
COP = 7.691 + 0.4559 T, — 0.165 x T,ys + 0.001027 * T,*
—0.01567 x Ty * Tyys + 0.001192  T,,s2 4 0.0001733
% To> — 9e — 05 « Tg?  Tyys + 0.000164 % Ty x Tyys? (14)

5. Results and discussion

The simulation results of radian floor heating systems are com-
prehensively evaluated under the proposed optimized control
strategy and compared to that of the intermittent operation in
terms of thermal response time and power consumption in this
section.

5.1. Lower heat load

In this case, the heat loads for the three thermal zones were
relatively lower due to the higher average ambient temperature.
To ensure that the thermal response times for the three zones
are about one hour, it can be determined that T, of three zones
during the intermittent period (8:00 ~ 18:00) was set at 17 °C.
Tws was set at the lower water temperature of 30 °C due to the
decreased heat load which is caused by the lower zone air tem-
perature and the higher ambient temperature during the daytime.
Tys of the thermal response period (the period from 18:00 to the
time when the zone air temperature reached 18 °C) was adjusted
upward to 45 °C based on the thermal response prediction model
and known information such as the specifications of the radiant
floor and the zones configurations. On the other hand, T, and
Tys were set at 18 °C and 40 °C all the time except for the period
of the thermal response period and 8:00 ~ 18:00 for the opti-
mized control strategy. T, and T,s; were set at 18 °C and 40 °C
all the time except for the period of 8:00 ~ 18:00 under the inter-
mittent operation when the heating system was turned off. The
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Fig. 13. The zone air temperature trends of the optimized control strategy and the intermittent operation under case study one.
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Table 5
The thermal response time of the optimized control strategy and the intermittent operation under different case studies.
Case Optimized control (min) Intermittent control ATresp2 ATresp2
Zone Predicted value Simulation AT esp (min) (%)
Case 1 Zone 1 59 57 -2 110 —53 —48%
Zone 2 68 75 7 145 -70 —48%
Zone 3 50 48 -2 96 —48 —50%
Case 2 Zone 1 43 49 6 135 —86 —64%
Zone 2 70 67 -3 188 -121 —64%
Zone 3 48 44 -4 120 -76 —64%
Case 3 Zone 1 63 65 2 130 —65 —50%
Zone 2 65 61 -4 167 -106 —63%
Zone 3 67 65 -2 110 —45 —41%
Note:ATesp1 = Tresp (simulation) — Tresp (prediction),
ATrespz = Tresp(simulation) — Tregp (Intermittent),
ATresp2 (%) = (Tresp(simulation) — Tresp (Intermittent)) /Tresp (Intermittent).
7 T
= 0:00~8:00! = 8:00~18:00 = 18:00~24:00

zone air temperature trends of the optimized control strategy and
the intermittent operation under case study one are shown in
Fig. 13 and the thermal response times of the optimized control
strategy and the intermittent operation under different case stud-
ies are demonstrated in Table 5. The initial air temperatures were
significantly higher for the optimized control strategy than that
for the intermittent operation, which was the main reason why
the thermal response time was remarkably lower in all three
thermal zones of the former than of the latter. The thermal
response times for the three thermal zones were reduced from
96 ~ 145 mins to 48 ~ 75 mins, a reduction of about 48 ~ 70
mins, or roughly 48% ~ 50%.

The power consumption of the air-source heat pump of the
optimized control strategy and the intermittent operation of case
one was illustrated in Fig. 14(a). Overall, the total power consump-
tions for the three thermal zones under the two control strategies
were not significantly different throughout the day. Although there
was a small increase in power consumption under the optimized
control strategy during the intermittent period compared with
the intermittent operation, the optimized control strategy also
reduced the peak heat load during the thermal response phase
after the 18:00 h. However, the heat load under intermittent oper-
ation after the 18:00 h was significantly larger, and the long-time
operation under the decreased COP due to the relatively lower
ambient temperature led to higher energy consumption under
the intermittent operation than that of the optimized control strat-
egy during the thermal response period. The total power consump-
tions of all the three thermal zones of the optimized control
strategy were 1.0% higher than that of the intermittent operation
on average.

5.2. Higher heat load

In this case, the heat loads for the three thermal zones were rel-
atively higher owing to the lower average ambient temperature.
According to the response time prediction model, it can be deter-
mined that T, of three zones was set at 17 °C and T, was set at
the lower water temperature of 30 °C during the intermittent per-
iod (8:00 ~ 18:00). T,s of the thermal response period was
increased upward to 50 °C since the lower ambient temperature
contributed to the higher heat load for case two. In addition, T,
and T, were set at 18 °C and 45 °C all the time except for the per-
iod of the thermal response period and 8:00 ~ 18:00 for the opti-
mized control strategy. T, and T,,s were set at 18 °C and 45 °C all
the time except for the period of 8:00 ~ 18:00 under the intermit-
tent operation when the heating system was turned off. The zone
air temperature trends of the optimized control strategy and the
intermittent operation under case study two are shown in Fig. 15
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Fig. 14. The power consumption of the air-source heat pump of the optimized
control strategy and the intermittent operation under three cases.
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Fig. 15. The zone air temperature trends of the optimized control strategy and the intermittent operation under case study two.

and the thermal response times of the optimized control strategy
and the intermittent operation under different case studies are
demonstrated in Table 5.

As can be seen, the zone air temperatures quickly decreased to
17 °C and the radiant floor heating system runs continuously from
11:00 to 18:00 due to the lower ambient temperature during the
daytime relative to case one. Then the initial air temperatures were
1.5 ~ 2 °C higher for the optimized control strategy than that for
the intermittent operation. And this was also responsible for the
significantly increased thermal response time for the intermittent
operation. Therefore, the thermal response times for the three
thermal zones were reduced from 120 ~ 188 mins to 44 ~ 67 mins,
a reduction of about 76 ~ 121 mins, or nearly 64%.

The power consumptions of the air-source heat pump of the
optimized control strategy and the intermittent operation of case
two were illustrated in Fig. 14(b). Overall, the total power con-
sumptions for the three thermal zones under the two control
strategies were almost as large as each other throughout the day.
Similar to case one, the total power consumptions of the optimal
control strategy were still competitive compared to the intermit-
tent operation due to the large peak load reduction of the former
during the thermal response phase although the optimal control
strategy undertook on additional power consumption during the
intermittent period of 8:00 ~ 18:00. The total power consumptions
of all the three thermal zones of the optimized control strategy
were 4.9% higher than that of the intermittent operation on
average.

5.3. Case study three

From case one and case two, it can be seen that the thermal
response time of the thermal zone two with greater heat load in
the same supply temperature was about 35% larger compared to
the thermal zone one and thermal zone three, and this problem
cannot be better solved by water flow distribution. In case three,

15

T, of the three thermal zones were set differently according to
their heat load to address the problem of the uneven thermal
response times of the three thermal zones. According to the
response time prediction model, it can be determined that T, of
three zones during the intermittent period (8:00 ~ 18:00) was
set at 16.5 °C, 17 °C, and 16 °C, respectively. T,s was set at 30 °C
during the daytime of 8:00 ~ 18:00. T,s was increased upward
to 50 °C during the thermal response period. Besides, T, and T
were set at 18 °C and 45 °C all the time except for the period of
the thermal response period and 8:00 ~ 18:00 for the optimized
control strategy. T, and T,,; were set at 18 °C and 45 °C all the time
except for the period of 8:00 ~ 18:00 under the intermittent oper-
ation when the heating system was turned off.

The zone air temperature trends of the optimized control strat-
egy and the intermittent operation under case study three are
shown in Fig. 16 and the thermal response times of the optimized
control strategy and the intermittent operation under different
case studies are demonstrated in Table 5. The three thermal zones
were heated at zone air temperatures of 16.5 °C, 17 °C, and 16 °C
for 5 h, 6 h, and 4 h, respectively during 8:00 ~ 18:00. The thermal
response times for the three thermal zones were reduced from
110 ~ 167 mins to 61 ~ 65 mins, a reduction of about 45 ~ 106
mins, or roughly 41% ~ 63%. Furthermore, the thermal response
times difference among the three zones was only 4 min or about
6%.

The power consumptions of the air-source heat pump of the
optimized control strategy and the intermittent operation of case
three are illustrated in Fig. 14(c). Overall, the total power con-
sumptions for the three thermal zones under the two control
strategies were almost as same as each other throughout the
day. The zone air temperatures were differently set for the three
zones which have further reduced the total power consumptions
of the radiant floor heating systems. And the total power consump-
tions of the optimized control strategy were 0.1% lower than that
of the intermittent operation. Consequently, the more rapid ther-
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Fig. 16. The zone air temperature trends of the optimized control strategy and the intermittent operation under case study three.

mal response and comparatively power consumption have ensured
the great potential of the proposed optimized control strategy
based on the thermal response time prediction model in terms of
better environment comfort and energy efficiency.

6. Conclusion

In this study, an optimal control strategy based on a thermal
response time prediction model for radiant floor heating systems
was proposed by applying the GPR algorithm and evaluated by
comparison with conventional intermittent operation strategy in
terms of rapid response performance and energy efficiency. First,
a base case building model was developed by TNRSYS and vali-
dated by experimental results. Then, a comprehensive database
of thermal response times for a variety of scenarios based on var-
ious building characteristics, radiant floor features, and weather
information was obtained by parametric simulations. Besides, a
sensitivity analysis of the thermal response performance to seven
kinds of explanatory variables was performed by introducing Pear-
son correlation coefficients, and a comprehensive theoretical
explanation of the sensitivity analysis results was demonstrated
which indicated that the initial zone air temperature, the pipe
spacing, the water supply temperature, and the shape factor con-
tributed to thermal response time in descending order while the
pipe diameter and the ambient temperature had smaller influence
and the water velocity in the buried pipe had few impacts on the
thermal response performance of radiant floors. The significance
analysis of the characteristic parameters of the radiant floor was
obtained to rank the influencing factors affecting the thermal
response time of radiant floor which can provide guiding sugges-
tions for the radiant floor heating system design. Moreover, the
response time prediction model of radiant floor heating systems
based on the GPR algorithm with a larger R? of around 0.96 was
obtained by an in-depth comparison of commonly used ML algo-
rithms such as MLR, RF, and SVM. And its accuracy was verified
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by cross-validation and 25% of database collection. Finally, an opti-
mal control strategy based on the response time prediction model
was proposed and compared with the conventional intermittent
operation strategy in terms of thermal response performance and
energy efficiency. The optimized control strategy can reduce the
response time from the original 96 ~ 188 mins to about 44 ~ 75
mins, achieving a reduction in thermal response time of
45 ~ 121 mins, a reduction of about 41% ~ 64% while keeping
the comparative power consumption. Integrating the thermal
response time prediction model into the radiant floor heating con-
trol system can effectively preheat the building’s indoor environ-
ment during the lower electricity consumption periods. The peak
load of the radiant floor heating system was reduced while reliev-
ing the pressure on the power grid during peak electricity con-
sumption. Therefore, the proposed optimal control of thermal
response prediction based on the GPR algorithm can effectively
and largely reduce the thermal response time of the radiant floor
heating system and improve the indoor thermal comfort during
the thermal response phase without sacrificing the power
consumption.
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