
Citation: Wang, Q.; Xiong, H.; Ming,

T. Methods of Large-Scale Capture

and Removal of Atmospheric

Greenhouse Gases. Energies 2022, 15,

6560. https://doi.org/10.3390/

en15186560

Received: 27 August 2022

Accepted: 5 September 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Editorial

Methods of Large-Scale Capture and Removal of Atmospheric
Greenhouse Gases
Qing Wang 1, Hanbing Xiong 2 and Tingzhen Ming 2,*

1 School of Architectural Engineering, Huanggang Normal University, No. 146 Xingang Second Road,
Huanggang 438000, China

2 School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122 Luoshi Road,
Hongshan District, Wuhan 430070, China

* Correspondence: tzming@whut.edu.cn

1. Introduction

The terms “global warming” and “climate change” refer to the large-scale impacts of
human actions such as the burning of fossil fuels and extensive deforestation that contribute
to a rise in the level of greenhouse gases in the atmosphere [1]. The Intergovernmental Panel
on Climate Change (IPCC) asserts that the problem of greatest concern for humankind
in this century is climate change, stimulated by an increase in the global average surface
temperature of 1.1 ◦C since 1900 [2,3]. The global water cycle is being disrupted by
climate change, resulting in droughts in some regions and extreme rainfall and flooding
in others [4]. Continued warming will accelerate permafrost melting, which can cause a
loss of seasonal snow cover, melting glaciers, and a reduction in the summer Arctic sea ice.
Coastal communities across the world will be impacted, and lowland areas will see more
frequent floods and severe shoreline erosion as sea levels rise [5]. More frequent ocean
heat waves, ocean acidification, and reduced oxygen levels in the sea are all consequences
of climate change that can have an impact on marine ecosystems and the livelihoods of
people who depend on them. Cities, in particular, suffer significant effects of climate
change. Urbanization increases the severity and frequency of heat waves as well as extreme
precipitation [6]. The “Paris Agreement”, which seeks to restrict the rise in the average
global temperature above its preindustrial level to 1.5 to 2 ◦C, was signed by 175 nations
with the goal of minimizing the harm that is caused by climate change [7]. Removing
greenhouse gases (GHGs) from the atmosphere is one important way to help achieve
this target.

2. Greenhouse Gases in the Atmosphere

Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons
(HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) are the six GHGs that
must be restricted in the atmosphere, according to the Kyoto Protocol [8]. The three most
significant GHGs, with their respective average global concentration and their contribution
to global warming, are: CO2, 410.5 ppm, 66%; CH4, 1877 ppb, 16%; N2O, 332.0 ppb, 7%. The
leading contributor to global warming is CO2. The increase in average global temperature
will reach 3.8 ◦C if the concentration of CO2 in the atmosphere doubles, and it will drop
by 3.6 ◦C if it is cut in half [9]. CH4 presently contributes less to global warming, but its
effect cannot be ignored. One ton of CH4 causes as much global warming as 86 tons of CO2
does [10]. Radiative forcing could be decreased by 16% within 10–20 years by returning the
atmospheric CH4 concentrations to the pre-industrial levels of 760 ppb [11]. It is therefore
desirable—even imperative—to hold the amounts of CO2 and CH4 in the atmosphere to
specific levels.
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2.1. Capture and Removal of CO2

Strategies such as afforestation and vegetation restoration are natural and eco-friendly
approaches to reducing the level of CO2 in the atmosphere. The potential of nature to
absorb CO2, however, will take more than tens of thousands of years to achieve the goal of
carbon neutrality if we are reliant just on the ecosystem. It is not practical to address climate
change only by planting a great many trees quickly. Other approaches are also needed.
Carbon capture and storage (CCS) is a way to reduce carbon emissions by capturing and
storing CO2 at its source [12].

CO2 can be captured in a variety of ways, including electrochemically [13], through
liquid-absorbency [14], and physically [15,16]. The cost of capturing one ton of CO2 with
CCS technology is $36 to $53 [17], which is cost-effective. The active deployment of CCS
technology has not been widely adopted because there are still some technical challenges
to be solved [18,19]. Although CCS can dramatically lower emissions from the electric-
generation sector (coal-fired power plants), it is unable to capture emissions from the
construction and transportation sectors, making it challenging for CCS technology alone
to reach the goal of the Paris Agreements. Active emission reduction strategies can more
effectively address dispersed carbon emission sources and accomplish decarbonization.
The most feasible alternate technique, known as bio-energy with carbon capture and storage
(BECCS), involves absorbing CO2 from the atmosphere by having plants or crops grow and
with the use of CCS technology [20]. The trees may be burnt for energy while the CO2 that
is emitted during the combustion is captured using the CCS technology. The trapped CO2
is kept underground, where it is preserved from escaping back into the atmosphere, and the
process is repeated. The technique has the potential to eventually take all of the excess CO2
out of the atmosphere if it is used on a large enough scale [21]. However, BECCS requires a
large forested area, which can result in a shortage of farm land and fresh water, and have
other negative consequences [22]. Direct air capture (DAC) is the strategy of chemically
directly converting CO2 from the atmosphere into compounds like carbonates [23]. Figure 1
shows that relative to BECCS, DAC can lessen the use of land and water, but its high cost
is still a major barrier to its commercialization. The standard DAC system costs around
$600 per ton of CO2 that is captured [24]. According to a recent report [25], a pilot plant can
decrease the cost to $113–232 per ton of CO2 that is captured by implementing appropriate
energy-saving measures, but this is still significantly more expensive than CCS.
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2.2. Capture and Removal of CH4

In fact, planning only for the removal of CO2 from the atmosphere is not enough.
Even if no additional CO2 is produced, the existing carbon store (515 Gt) can continue to
contribute to global warming for decades to come [27]. The oceans also store a substantial
amount of CO2. It is released into the atmosphere when the level of CO2 in the atmosphere
drops due to the breakdown of carbonic acid in the seas [28].

Reducing atmospheric CH4 levels, according to the United Nations Environment Pro-
gramme (UNEP), is another efficient strategy to combat climate change [29]. It can reduce
warming by 0.4 to 0.5 ◦C by 2050. Rising ocean temperatures will cause CH4 (1146 Gt)
in the form of flammable ice to become unstable and release itself into the atmosphere,
thereby exacerbating global warming [30]. There are few experiments currently being done
on atmospheric CH4 removal. Thermal catalysis is regarded by certain researchers as a
potent technique for removing atmosphere CH4. The disadvantages of thermal catalysis,
which frequently involves high temperatures and pressures, include considerable energy
consumption, difficult reaction conditions, and some safety risks. CH4 has a high C-H
bond energy (413 kJ/mol) and a relatively stable structure. It is presently not economical to
employ thermal catalytic technology on a wide scale to degrade atmospheric CH4 because
it demands temperatures of more than 700 ◦C. The limit of the reaction conditions can be
lowered by catalyst improvement. Brenneis et al. [31] added copper-treated zeolite particles
to a reaction tube through which air passed. The zeolite was capable of capturing and
converting all of the CH4 in the air when heated it was to 310 ◦C. The only place it can
actually be utilized is in a lab, and even there, the reaction temperature is too high for the
process to be practical.

Photocatalytic semiconductor technology can be used to remove pollutants at room
temperature and pressure, and the most common pollutants, such as indoor formaldehyde
and volatile organic compounds (VOCs), have achieved good degradation rates. De
Richter [32] presented a solar chimney power plant that was integrated with photocatalytic
reactors (SCPP-PCRs) to address the problem of climate change. The system utilizes a
natural convection mechanism to provide a powerful airflow and a driving force without
the need for fuel. The canopy is coupled with a photocatalytic reactor. Atmospheric
CH4 that comes into contact with the photocatalyst is converted to CO2 and H2O under
solar irradiation. Ming et al. [33] confirmed the feasibility of SCPP-PCRs in combating
global climate change by using a numerical simulation method, as shown in Figure 2.
A good photocatalyst is required for the system to achieve the best performance. Chen
et al. [34] carried out experiments on the oxidation of CH4 by a new synthetic photocatalyst
(Ag/ZnO), and they found that nano-scale zinc oxide could effectively oxidize 100% of
CH4 under sunlight irradiation, and the activity of the silver-plated ZnO semiconductor
remained stable after multiple uses. The reaction rate depended on the concentration of
CH4; it was faster at lower concentrations and less susceptible to temperature changes
after the light conditions were set up. The experimental findings demonstrate that the
photocatalytic technique that is utilizing Ag-ZnO has special benefits for low levels of
atmospheric CH4 that are challenging to handle by thermal catalysis. Other photocatalysts
with great potential include g-C3N4@Cs0.33WO3, ZnO/CuO, and Ga2O3/AC. The DAC
system can still be used to capture and degrade atmospheric CH4 by creating a continuous
stream of air with a fan, then absorbing the CH4 with organic solutions or removing it using
a honeycomb photocatalytic reactor that is positioned behind the fan [35]. However, if the
chemical absorption is considerable, then the employment of the DAC results in excessive
energy consumption and subsequent maintenance expenses.
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3. Conclusions

It is essential to continue studying methods for removing greenhouse gases from the
atmosphere. The following are a few major conclusions:

1. The disadvantages of the current methods for quick, large-scale CO2 removal from
the atmosphere can include significant energy consumption, high investment, and
high maintenance costs. Transformative technologies are needed in this field.

2. The removal of atmospheric CH4 is a worthwhile goal, but because this gas is so
rarefied, and removing it remains a challenge.

3. Although the study of SCPP-PCRs is still in its early stages, it appears to be a promising
technology that can not only decrease CO2 emissions from thermal power plants but
also the diminish greenhouse gases that are in the air.
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